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Abstract

Digital Pathology (DP) has experienced a significant growth in recent years and
has become an essential tool for diagnosing and prognosis of tumors. The avail-
ability of Whole Slide Images (WSIs) and the implementation of Deep Learning
(DL) algorithms have paved the way for the appearance of Artificial Intelli-
gence (AI) systems that support the diagnosis process. These systems require
extensive and varied data for their training to be successful. However, creating
labeled datasets in histopathology is laborious and time-consuming. We develop
a crowdsourcing-multiple instance labeling/learning protocol that is applied to
the creation and use of the CR-AI4SkIN dataseta. CR-AI4SkIN contains 271
WSIs of 7 Cutaneous Spindle Cell (CSC) neoplasms with expert and non-expert
labels at region and WSI levels. It is the first dataset of these types of neoplasms
made available. The regions selected by the experts are used to learn an au-
tomatic extractor of Regions of Interest (ROIs) from WSIs. To produce the
embedding of each WSI, the representations of patches within the ROIs are ob-
tained using a contrastive learning method, and then combined. Finally, they
are fed to a Gaussian process-based crowdsourcing classifier, which utilizes the
noisy non-expert WSI labels. We validate our crowdsourcing-multiple instance
learning method in the CR-AI4SkIN dataset, addressing a binary classification
problem (malign vs. benign). The proposed methodobtains an F1 score of
0.7911 on the test set, outperforming three widely used aggregation methodsfor
crowdsourcing tasks. Furthermore, our crowdsourcing method also outperforms
the supervised model with expert labels on the test set (F1-score = 0.6035). The
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promising results support the proposed crowdsourcing multiple instance learn-
ing annotation protocol. It also validates the automatic extraction of interest
regions and the use of contrastive embedding and Gaussian process classification
to perform crowdsourcing classification tasks.

Keywords: Histopathology, Skin cancer, Gaussian Processes, Multiple
Instance Learning, Crowdsourcing

1. Introduction

Digital Pathology (DP) has experienced a significant growth in recent years,
becoming essential for the diagnosis and prognosis of tumors. DP involves cap-
turing, storing, and analyzing high-resolution digital images of tissues, known
as Whole Slide Images (WSIs). WSIs are vital in the pathological diagnosis pro-
cess because they allow easy data sharing, storing, and analysis on the computer
[1]. WSI analysis provides pathologists with a comprehensive understanding of
the data, leading to more accurate diagnoses of tumors and various cancer sub-
types. Furthermore, the availability of WSIs has facilitated the implementation
of novel computer vision techniques based on deep learning, which allow the au-
tomatic identification of new biomarkers and innovative features in the images
to enhance the diagnostic process [2]. Unfortunately, for these deep learning
techniques to perform effectively, they require large and diverse datasets [3].

Generating large-scale labeled histology datasets is a time-consuming and
error-prone task. Recently, crowdsourcing has emerged as an appealing proce-
dureto labeling histopathological datasets. Crowdsourcing distributes the effort
among a large number of annotators who may have varying degrees of exper-
tise. In medical image-based diagnostic studies, crowdsourcing has produced
accurate results in microtasks, e.g. nuclei detection [4] or identification of can-
cer cells [5]. In more specialized tasks, e.g. tissue classification, annotators
with less expertise may introduce noisy labels [6, 7]. To address this issue, a
common strategy is to aggregate the different labels to generate a more accu-
rate label set [8]. Then, a regular classification method can be applied to this
noise-free set of labels. However, recent research suggests that this strategy-
may not be optimal, as it typically leads to poorer performance compared to
models that consider each annotator’s confusion as part of the training process
[9]. To address this issue, several methods have been developed to learn from
noisy non-expert crowdsourcing labels, being their performance comparable to
that of supervised methods that use expert labels in histopathological tissue
classification [10, 11, 12].

Obtaining fine-grained WSI annotations through crowdsourcing remains a
challenging task, as it requires a significant amount of effort and time from the
annotators. They have to delineate and annotate the structures present in the
WSIs. Multiple Instance Learning (MIL) is a promising solution to tackle the
problem of detailed labeling. MIL considers samples to be grouped in bags.
Then, the labels are collected per bag, and there is no need for (fine-grained)
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individual labels. In the case of MIL in WSI analysis, a bag represents a WSI,
and the instances represent smaller regions within that slide. Therefore, the
labels are only collected at WSI level, and there is no need for pixel or region
labels, which streamlines the labeling process [13]. MIL methods have been
applied to histopathological images with promising results [14, 15].

Based on these observations, in this work, we design and develop a crowdsourcing-
MIL protocol to alleviate and distribute the burden of WSI labeling. This pro-
tocol combines two methods, (i) MIL: the global annotations are collected at the
WSI level to alleviate the burden of detailed labeling, and (ii) crowdsourcing:
the annotation effort is distributed among several non-expert annotators. We
apply this protocol to create the CRowdsourcing - Artificial Intelligence for cuta-
neouS spindle cell neoplasm hIstopathological diagNosis (CR-AI4SkIN) dataset.
CR-AI4SkIN comprises 271 WSIs of Cutaneous Spindle Cell (CSC) neoplasms
with expert and non-expert WSI annotations. To the best of our knowledge,
this is the first available dataset of CSC neoplasms and the first dataset of med-
ical images with crowdsourcing-MIL annotations. Secondly, in this work, we
also propose a new crowdsourced classifierfor histological image analysis that
utilizes these noisy global labels. The method is named Contrastive Learn-
ing Representations - Gaussian Processes for CRowdsourcing (CLR-GPCR).
It combines embedded-based MIL and crowdsourcing classification. We first
learn to automatically select Regions of Interest (ROIs) from a reduced set of
expertly annotated WSIs. Using a contrastive learning paradigm, we extract
features from the patches of those ROIs. Then, we aggregate the embeddings
to obtain a global latent representation of each WSI. Finally, we utilize Gaus-
sian Processes for crowdsourcing classification with this global embedding and
the noisy global WSI labels provided by the non-experts for each WSI. The
overview of our proposed method is depicted in Figure 1. Specifically, the main
contributions of our work are:

• A new procedurefor high-quality crowdsourcing dataset creation and a
publicly-available histological dataset of 271 WSIs. They correspond to
seven different types of spindle cell neoplasms diagnosed by two expert
pathologists and 10 in-training pathologists.

• We propose CLR-GPCR, a novel formulation based on self-supervised
learning and MIL combined with crowdsourcing Gaussian processes for
the tumor classification task. We use the noisy WSI labels provided by
non-expert pathologists. To the best of our knowledge, this is the first
methodthat formulates and tackles crowdsourcing with global labels.

• Comprehensive experiments demonstrate the promising performance of
our crowdsourcing method. With this method, we found averaged im-
provements of nearly ∼ 9.0% in averaged F1-score compared to majority
voting and expert labeling.

The remainder of the paper is organized as follows. Section 2 describes
the related work. Section 3 introduces and details the new publicly available
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Figure 1: Overview of the proposed CLR-GPCR model. In this work, we address
(weakly supervised) histology image classification on skin WSIs using noisy global labels pro-
vided by several non-expert annotators. Our method consists of two steps: 1) self-supervised
feature extraction based on Contrastive Learning detailed in subsection 4.1; 2) Crowdsourcing
classification using Gaussian processes, explained in subsection 4.2.

CR-AI4SkIN dataset. Section 4 details the proposed method for crowdsourcing-
MIL, named (CLR-GPCR). This section is composed of Section 4.1, where the
WSI embedding construction using self-supervised learning is explained, and
Section 4.2, where we present the Gaussian Process-based method for crowd-
sourcing classification. The experiments and results, as well as a discussion of
them, are described in the Section 5. Section 6 includes conclusions and future
work. Finally, Appendix A includes further details on the CSC neoplasms that
compose the CR-AI4SkIN dataset.

2. Related work

2.1. Digital pathology for skin cancer

According to the World Health Organization, nearly one in three diagnosed
cancers worldwide is a skin cancer [16]. Different techniques, such as der-
matoscopy, wood lamp, CT scan and histopathology, are utilized to diagnose
this disease. However, the gold standard for skin cancer detection is histological
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image analysis. Traditionally, histological slides were viewed with a light micro-
scope which is a highly time-consuming task. The digitization of biopsies has
created opportunities for automated analysis of WSIs using machine learning-
based methods. Applying deep-learning models to computer vision problems
shows excellent potential in skin cancer detection. However, most research is
based on the analysis of dermoscopic images [17, 18, 19, 20, 21, 22, 23] and
few studies have been focused on the analysis of WSIs [24, 25, 26, 27, 28, 29].
Hekler et al. [24] used transfer learning on a pre-trained ResNet50 convolu-
tional neural network (CNN) to differentiate between two classes, benign and
melanoma tissues. The main limitation of this work is that they cannot analyze
entire WSIs but only a characteristic tumor sub-region. In De Logu et al. [25],
a pre-trained Inception-ResNet-v2 network was then used to distinguish cuta-
neous melanoma areas from healthy tissues. In [26], the authors developed a
deep learning system to automatically detect malignant melanoma in the eyelid
from histopathological sections. The authors used the VGG16 model to assign
patch-level classification. The patches were embedded back into each WSI using
the malignant probability from the CNN to generate a visualization heatmap.
They utilized a random forest model to establish a WSI-level diagnosis between
malignant and benign samples. Current methods based on MIL have been suc-
cessfully applied to basal carcinoma (BCC) [29] or melanoma [27, 28], reducing
the time required to perform precise annotations. However, many types of
challenging skin cancer have not yet been explored. These include CSC neo-
plasms, predominantly composed of spindle-shaped neoplastic cells arranged in
sheets and fascicles [30]. CSC neoplasms are challenging to diagnose due to
the considerable morphological overlap between the different tumor types that
make up this group [31], which poses a particular problem for less experienced
pathologists. To the best of our knowledge, there is only one study in which
deep learning techniques have been applied to automatically analyze this type
of lesion [32]. In this case, techniques based on self-training were used to de-
tect tumor regions. In line with that study, in this paper, we develop the first
deep learning-based classifier to identify the malignancy or benignity of different
types of CSC lesions.

2.2. Multiple Instance Learning in digital pathology

In the MIL framework, instances are grouped in bags and the only available
labels are at the bag level. The standard MIL assumption considers that a bag is
labeled as positive if at least one instance belongs to the positive class. Among
other tasks, it has been used to detect breast cancer [33] and grade local patterns
in prostate cancer [34]. This assumption makes sense when the labels at the
pixel/region label directly affect the WSI label. However, there are cases where
this is not true. Regarding CSC neoplasms, the WSI outcome is a combination
of features among the different patches [27], which is called the bag-embedding
MIL [15]. The most common technique is to obtain the bag-level representation
by instance-level aggregation of features extracted from each instance by a CNN
backbone. The feature extraction is frequently performed with pretrained net-
works [35], transfer learning [36], and more interestingly, following a contrastive
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learning strategy[37]. The contrastive learning representations do not need in-
stance features, being useful to obtain bag descriptors. It is a self-supervised
method, imposing similarity among similar patches (from the same WSI) by
means of a contrastive loss [38]. Then, the aggregation of the patch features
results in the bag embedding. The most straightforward and non-trainable ag-
gregation techniques are batch global average (BGAP) [39] and batch global
max pooling (BGMP) [33]. Other aggregation techniques include trainable pa-
rameters, such as weighted embeddings based on attention [40] or recurrent
neural networks (RNN) [14]. Recently, authors in [41] proposed a Transformed
based correlated MIL (TransMIL) that considers the morphological and spatial
correlation between instances.

2.3. Crowdsourcing in digital pathology

The concept of learning from crowds was first introduced in the biomedical
domain in 2016 [42]. The authors involved non-experts in an online system
to label mitosis in breast cancer histological images. They adapted a CNN to
learn from noisy observations. Since then, more sophisticated crowdsourcing
labeling strategies have been developed for more complex tasks. Amgad et al.
[6] labeled a triple negative breast cancer dataset with a panel composed of
twenty medical students, three junior pathologists, and two senior pathologists.
They designed a structured protocol where medical students segmented most of
the WSIs. Junior and senior pathologists annotated the most challenging ones.
In this protocol, medical students and junior pathologists obtained feedback
and reviews from senior pathologists. Later, the same authors in [7] further
annotated these images for nuclei classification. The protocol was similar and
employed a collaborative effort of the different participants. They also utilized
non-supervised segmentation methods and region labels to suggest delineations
with associated classes.

Other recent works avoided label curation and directly utilized the crowd-
sourcing labels. The most straightforward way to utilize these noisy labels is
to aggregate them by Majority Voting.More elaborated methods considered the
biases of the different annotators, yielding a better-calibrated set of training
labels, see [8, 43, 44, 45, 46]. The quality of the labels can be further improved
by considering correlations with related samples, i.e., their nearest neighbors
[47, 48].However, a recent work found that when labels from multiple annota-
tors are available, methods that model observer confusion as part of the training
process generally perform better than methods that aggregate the labels in a
separate step prior to training [9]. In this vein, Nir et al. [10] used the Glea-
son2019 challenge1 data to exploit the multiple opinions for Gleason grading.
The authors jointly estimated a latent classifier (logistic regression) and the
reliability of each participant during the learning process. They obtained an
overall agreement with the pathologists consistent with the agreement levels
reported in the literature. Following a similar strategy, López-Pérez et al. [11]

1https://gleason2019.grand-challenge.org/
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applied crowdsourcing Gaussian Processes (GP) to breast cancer images labeled
by several medical students. Crowdsourcing GPs trained with noisy labels were
competitive with the ones trained with expert labels. They automatically esti-
mated the reliability of each participant and a latent GP classifier for predicting
the actual class.

These results suggested the feasibility of using data labeled by non-experts
without the need for expert review to feed machine learning systems. Following
this strategy, we propose a crowdsourcing methodfor CSC neoplasm classifi-
cation under a multiple instance learning paradigm using WSI labels. To the
best of our knowledge, this work is the first on crowdsourcing classification
with (global) WSI labels in general and specifically applied and studied in CSC
neoplasm classification.

3. CR-AI4SkIN: Data acquisition and annotation protocol

3.1. Dataset description

For this study, we used a scaled-down version of the CR-AI4SkIN dataset
consisting of WSIs provided by the University Clinic Hospital of Valencia (HCUV)
and San Cecilio University Hospital in Granada (HUSC) of skin tissue biopsies
containing CSC neoplasms. A complete description of the CR-AI4SkIN dataset
is included in Appendix A. For the purpose of this study, 227 images were used.
In total, 123 were diagnosed as benign and 104 as malignant.

3.2. Methodology Part 1: Extraction of expert and automatically selected ROIs

Since WSIs are high-resolution images, not all the information is relevant for
the final diagnosis. Aiming at pre-processing the biopsies and reducing the noisy
patches, a mask indicating the presence of tissue in the patches was obtained by
applying the Otsu threshold method over the magenta channel. Subsequently,
the patches with less than 20% of tissue were excluded from the dataset. Ad-
ditionally, expert pathologists annotated the regions of interest (ROIs), i.e. the
tumoral areas that have a clinical impact on the outcome, in 15% of the slides
using in-house software based on the OpenSeadragon library [49]. These expert
annotations were then used to train an automatic ROI prediction algorithm,
designed as a teacher-student network and trained on a few WSIs labeled by
the expert pathologists. For further details of the methodology employed, see
[32]. Note that in this case 10% was used to train the ROI extraction method
and the rest to validate the automatic ROI extraction process. Finally, all WSIs
in the database were automatically analyzed by the ROI prediction algorithm,
obtaining the ROIs of each WSI. The final dataset is composed of 512 × 512
patches (with 50% of overlap) from the ROIs at a magnification of 10×.

The purpose of the ROI extraction was twofold. First, it aimed at guiding
non-expert participants through the labeling process. Second, since the images
did not fit in computer memory, only the ROIs were passed to the classification
method.
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Table 1: Number of images used for training, validating, and testing the models of each non-
expert annotator. Note that for the validation and test set, the same samples labeled by all
non-experts were used.

1 2 3 4 5 6 7 8 9 10
Train 148 142 151 143 154 145 155 149 152 150
Val 22
Test 44

3.3. Methodology Part 2: Non-expert annotation protocol

Ten non-expert pathologists participated in the annotation of the whole
dataset: four resident pathologists from HCUV and six from HUSC. 70% of non-
expert pathologists were in their third and fourth year of residency, while the
remaining 30% were first and second-year medical residents. We designed the
following annotation protocol for the annotation process. First, to simplify the
task of analyzing WSIs for non-expert participants, we provided them with the
ROI generated by the automatic algorithm trained on expert annotations, see
subsection 3.2. During the examination of the WSIs, the non-experts performed
two tasks: i) first, they indicated whether they agreed with the ROI proposals
or wished to manually annotate additional regions. If they disagreed with every
ROI proposal, they were compelled to manually delineate at least one ROI.
An ROI proposed by the model is correct if at least 50% of the area contains
tumoral tissue; ii) secondly, they also assigned a global label to the WSI from
the set of the seven classes.

To mitigate individual biases and test the concordance among annotators,
from the 271 WSIs that compose the CR-AI4SkIN dataset, we gathered 106
of them, referred to as the “dense set”, that were annotated by all non-expert
participants. The remaining images were only annotated by a subset of non-
expert pathologists. Table 1 displays the images annotated by each non-expert
pathologist for training, validation, and testing of the models. To ensure fair
comparisons, the validation and test images were chosen from the dense set.

4. Classification framework for Multiple Instance Learning with crowd-
sourcing labels

In our medical problem, we observe the training data D = {(Xb,y
a
b ) : b =

1, ..., B; a ∈ Ab}, where Xb is the b-th WSI and ya
b is the label provided by the

a-th non-expert annotator for the b-th WSI. There are A different annotators
and we note by Ab the set of annotators who provided a label to the b-th WSI.
In this work, we address a binary classification problem. For this purpose, we
group the malignant and the benign classes. We left out from this study the
afx lesions as the distinction between benign and malignant is unclear. The
WSI labels for each annotator are ya

b ∈ {0, 1}, denoting 1 the positive (malign)
class. Under the MIL paradigm, each WSI is a bag composed of patches, i.e.,
Xb = {xi|i ∈ bag b}. These patches do not have an associated label that could
determine the WSI label, but rather the combination of features of the different
patches determines the label of the WSI. In this case, we aim to train a model
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Figure 2: Probabilistic graphical model of our CLR-GPCR model. Dark circles stand
for observed variables, while light circles stand for latent variables. We project the patches
xi onto a latent embedding space to obtain their low-dimensional representations hi, using a
neural network parametrized by the set of weights Φ with contrastive learning. Then, the low-
dimensional representations are aggregated using the average to obtain a global embedding of
the whole ROI, ĥb. Gaussian Processes for Crowdsourcing model the latent real label of the
ROIs, zb. Then, the observed (noisy) labels ya

b are obtained using the latent real zb and the
reliability matrix Ra for each annotator. We introduce the sparse approximation for inference,
i.e., we summarize the GP with a set of M inducing points um with inducing locations h̃m.

capable of predicting bag-level labels using a combination of features extracted
at the instance level. This learning strategy falls under the embedding-based
MIL paradigm2.The following sections explain the feature extraction process to
obtain bag embeddings and the crowdsourcing classifier.

4.1. Self-Supervised feature extraction: SimCLR

To obtain a low-dimensional representation for each instance from the pre-
dicted ROIs (see subsection 3.1), we use a self-supervised method. Typically,
self-supervised methods are trained so that similar images have embeddings that
are close and dissimilar images have embeddings far away from each other. More
concretely, we have chosen to use the SimCLR method [38]. Under this frame-
work, the notion of similarity is built around a set of predefined transformations
T . These are commonly augmentation transformations, e.g., rotations, transla-
tions, etc. Then, two images are considered similar if there exists a transforma-
tion t ∈ T that converts one into another. To learn the weights, SimCLR uti-
lizesthe normalized temperature-scaled cross-entropy loss (NT-Xent) [50, 51, 52]
defined as follows:

ℓi,j = − log
exp(sim(hi,hj)/τ)∑2S

k=1 1k ̸=i exp(sim(hi,hk)/τ)
(1)

where (hi,hj) are the embeddings (i.e., the output of the encoder network)of
two augmented patches (x̃i, x̃

′
i) from the same patch xi ∈ Xb. Each augmented

2Based on the denomination proposed in [40].
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patch is obtained by applying a different augmentation t, t′ ∈ T so that hi =
gΦ(x̃i) = gΦ(t(x)) and hj = gΦ(x̃

′
i) = gΦ(t

′(x)). In total, S different patches
are selected, being S the batch size. τ is the temperature that controls how
smooth the function is and sim : Rn×Rn → R is any similarity function between
vectors. We use the cosine similarity function, which is normally used [38, 37].
The other embeddings hk correspond to augmentations of other images in the
batch, that is, they are dissimilarsamples. This loss function (li,j) is low if the
similarpair has resembling embeddings, however, the resemblance of hi with
respect to other dissimilarsamples in the batch is taken into account in the
denominator. This way hi not only must be close to hj but also far from the
other hk.

Once we have obtained a feature descriptor for each patch of the region of
interest, we aggregate them using the average. If we have a bag of patches
{xi}Nb

i=1, then the embedding of the bag is ĥb = 1
Nb

∑Nb

i=1 gΦ(xi). Where gΦ is

the nonlinear projection learned by minimizing the loss defined in eq. (1).

4.2. Crowdsourcing classification: Sparse Gaussian Processes

SVGPCR predicts the observed noisy WSI label ya
b for each WSI embedding

ĥb using a (latent) Gaussian Process (GP) f and a global reliability matrix
{Ra}Aa=1 for each non-expert annotator. The reliability matrix of each annotator
is governed by two parameters {αa, βa}. This matrix is expressed as follows:

Ra =

(
αa 1− βa

1− αa βa

)
(2)

where the parameters are the specificity and sensitivity of each annotator, i.e.,
p(yab = 0|zb = 0) = αa and p(yab = 1|zb = 1) = βa. Then, the probability of the
observed (noisy) label for each non-expert annotator is given by the following
Bernoulli distribution:

p(yab |zb,Ra) =

A∏
a=1

[
(α

ya
b

a (1− αa)
1−ya

b

]zb
∗
[
β
1−ya

b
a (1− βa)

ya
b

]1−zb
(3)

We assume that the annotators label the different samples independently,

p(y|z,R) =

B∏
b=1

∏
a∈An

p(yab |zb,Ra). (4)

The prior distribution for the annotator behavior is modeled with a Beta dis-
tribution on the parameters α and β which is conjugated with the Bernoulli
distribution of Eq. (3). This prior distribution introduces the prior beliefs on
the annotators’ expertise. In this work, we use a non-informative prior since this
information is unavailable. Finally, the latent (real) label z is estimated using
a latent variable, f . The likelihood p(z|f)model for this problem is a Bernoulli
distribution, whose parameter is obtained by applying a sigmoid function to f .
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SVGPCR imposes a GP prior on f , i.e., f |Ĥ follows a multivariate Gaussian
distribution.

SVGPCR also introduces M inducing points for scalability {um}Mm=1, which
summarizes the information of the GP f . These inducing points are the re-
alizations of the GP in the inducing locations {h̃m}Mm=1, i.e., u = f(h̃). The
probabilistic model is given by

p(y, z, f ,u,R|Θ) = p(y|z,R)p(R)︸ ︷︷ ︸
CR modeling

p(z|f)︸ ︷︷ ︸
GP likelihood

p(f |u,Θ)p(u|Θ)︸ ︷︷ ︸
GP prior

. (5)

An overview of the graphical probabilistic model is depicted in Figure 2.
The goal here is to obtain the posterior p(z, f ,u,R|y,Θ). To fulfill this, we
perform stochastic variational inference [53]. We aim to find an approximate
posterior q(z, f ,u,R) by maximizing the Evidence Lower BOund (ELBO), see
[54] for further details on the inference process.

Once we learn the posterior distribution q, we predict new WSIs with the
following process. First, we extract features using the fine-tuned neural network
(detailed in subsection 4.1) and aggregate them using the average pooling to

obtain a global vector for this new WSI, ĥ∗. Then, we use the trained SVGPCR
model on these features, ĥ∗, to predict p(z∗) via Monte Carlo sampling.he whole
training and inference procedures are summarized in Algorithm 1 and 2.

Algorithm 1: CLR-GPCR High-level description of the training loop

Data: A set of WSIs with crowdsourced labels
Result: A trained encoder network Φ and SVGP for WSI classification
Initialize encoder network Φ
Initialize temperature τ
dataset ← All the images (without labels)
for epoch in range(num epochs) do

for batch in DataLoader(dataset) do
images ← augment(batch)
embeddings ← Φ(images)
loss ← NT-XENT(embeddings, τ)
update parameters(loss, Φ)

embeddings ← Φ(dataset)
dataset ← aggregate by patient(embeddings) ∪ crowdsourced labels
Initialize SVGP
for epoch in range(num epochs) do

likelihood ← compute likelihood(dataset, SVGP)
update parameters(likelihood, SVGP)
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Algorithm 2: CLR-GPCR High-level description of one inference step

Data: A batch of WSIs, a trained encoder network Φ and a trained
SVGP

Result: The probabilities of each WSI of being malignant
predictions ← ∅
for WSI in batch do

patches ← extract patches(WSI)
embeddings ← Φ(patches)
global embedding ← average(embeddings)
mean, variance ← SVGP(global embedding)
predictions ← predictions ∪ mean

Table 2: Number of images used for training, validating and testing the models. B: benign
lesions; M: malignant lesion; MV: majority voting of labels provided by non-experts; % Dis:
% discrepancy between expert pathologists and majority voting of non-experts.

Experts MV
% Dis

B M B M
Train 95 55 107 44 12%
Val 9 13 16 6 31.81%
Test 19 25 26 18 15.90%

5. Experiments and Results

5.1. Implementation

1)Dataset (CR-AI4SKIN): We used the binary version of theCR-AI4SKIN
databasedescribed in section 3 to assess the efficacy of our proposed crowdsourcing-
MIL method (CLR-GPCR). The dataset was divided into three splits (training,
validation and testing) containing 70%, 10% and 20% of the global dataset, re-
spectively. Several slides can belong to the same patient. We ensured a strict
separation of patients among the three sets. Table 2 displays the difference in
labeling provided by experts and the majority vote (MV) of non-experts for the
training, validation and test sets in terms of accuracy. Additionally, we report
the kappa agreement value for the non-expert annotators. The kappa value
ranges between -1 and 1, where -1 represents total disagreement, 0 represents
randomness, and 1 represents total agreement. The kappa is an insightful metric
to assess agreement among annotators as it considers the possibility of concur-
rence due to randomness. We calculate this metric for the test images, which
all participants annotated, and these values are displayed in Figure 3. The
non-expert annotators show a low-moderate level of agreement among them,
as shown in Figure 3a. While some pairs exhibit strong agreement with values
over 0.8, others show weak agreement with values near 0.5. Furthermore, the
annotators tend to agree more frequently with the MV labeling than with the
expert labeling, recall Figure 3b. While some have a strong agreement with
the expert labeling, others display a weak agreement. From this figure, we can
conclude that the annotators have varying levels of expertise.

12



(a) (b)

Figure 3: Kappa values for agreement among annotators. (a) The kappa values for each pair
of non-expert annotations; (b) the kappa value for each non-expert annotator and either the
expert annotation or the MV.

2) Model hyperparameters: CLR-GPCR consists of two modules: a self-
supervised feature extractor pretrained with all the images (SimCLR) and a
Gaussian process-based classifier using crowdsourcing labels (SVGPCR). We
used RESNET18 with an output dimension of 256 features as the backbone for
the feature extractor. Note that the inputs for the feature extractor are the
ROIs extracted from each WSI automatically by the ROI prediction algorithm
[32]. We optimized the feature extractor with Adam, a learning rate of 10−5 and
weight decay of 10−6, which remained fixed for all experiments. Additionally, we
used the cosine similarity with a temperature value of 0.5 in the loss function.
In the case of the Gaussian process classifier, the only fixed hyperparameter
was the Adam optimizer. The remaining hyperparameters were tuned using the
validation set, i.e., the learning rate and the number of inducing points. The
number of epochs was adapted to the experiment performed. Regarding the
labels used for the training, we consider three different:

• Expert labels. They are the labels provided by expert pathologists. They
are considered the ground truth for this task. These labels may also
contain some noise due to the high inherent subjectivity in this field.

• Aggregated labels. They are the result of combining non-expert annota-
tions. In this work, we employ three distinct methods: Majority Voting,
Dawid-Skene [43] and MACE [44]. Majority Voting offers a simple ag-
gregation method that does not consider annotators’ biases. In contrast,
Dawid-Skene explicitly computes and integrates annotators’ biases using
confusion matrices, similar to our method. MACE adopts a distinctive
approach by utilizing annotators’ biases selectively, particularly when de-
tecting potential spamming behavior. Furthermore, MACE assumes that
annotators’ biases remain consistent across instances, regardless of the
true underlying labels.
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• Crowdsourcing labels. They are the noisy labels the non-expert annotators
provide without any aggregation or processing. Our proposed CLR-GPCR
uses these labels.

3) Evaluation: The quantitative comparison of the different methodologies
was handled using different figures of merit for binary classification, such as
accuracy (ACC), F1-score (F1S), and area under ROC Curve (AUC). Note that
in the different experiments carried out, these metrics represent the average of
10 executions to obtain more precise estimations. Results for each model were
presented based on the type of label used during training, and expert labels
were always used for evaluation.

5.2. Ablation experiments

1) The role of SimCLR: This section examines the self-supervised feature
extraction process. The great advantage of this procedure is that it does not
need labels. Three configurations for feature extraction using a RESNET18 [55]
as the backbone were analyzed, and their performance was evaluated based on
how well the subsequent classification model performed. The first configuration
utilized the pre-trained weights reported by Bin Li et al. [37] for WSI lung
tumor detection. The other two configurations obtained the weights through
fine-tuning the SimCLR framework [38] on our data. Since SimCLR is known
to be sensitive to batch size [? ? ], two models were trained with batch sizes of
256 and 512. To compare the performance of the different feature extractors, we
used SVGPCR classifier first proposed in [54]. Figure 4 depicts the results of the
three configurations. Note that SVGPCR was trained using noisy annotations
from each non-expert annotator.

The model that was trained using a batch size of 256 consistently performed
better. Due to these findings, we used a batch size of 256 for further experiments.
Additionally, these results demonstrate the effectiveness of retraining the feature
extractor on our dataset compared to simply using a network pre-trained on an
external dataset. From this section, we evaluate the global descriptor from the
WSIs (in this case, from their ROIs). This global descriptor does not depend
on labels but only visual features.

2) Crowdsourcing study: The performance of the Sparse Gaussian Pro-
cesses model is largely influenced by two hyperparameters: the learning rate
and the number of inducing points. To study the effect of the learning rate,
we performed a grid search using 4 different learning rates (10−4, 10−3, 10−2

and 10−1) with 4 different numbers of inducing points (16, 32, 64, and 128).
We evaluated each combination using the same 3 binary classification metrics
as in the previous section (F1 Score, Accuracy and ROC AUC). The results are
displayed in Figure 5 with the learning rate on the X-axis, separated by the
number of inducing points. It can be seen that a low learning rate results in
poorer performance compared to higher values. If the learning rate is too low,
the model can fail to converge. This is why using a learning rate of 10−4 or
10−3 yields worse results. For larger values, the model does converge. It was
observed that a learning rate of 10−2 allows the model to generalize better when
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Figure 4: Influence of the SimCLR feature extractor on the classification stage. Metrics are
averaged across ten trials. Each chart represents the result given a different backbone, where
BS refers to the batch size employed when fine-tuning. The pre-trained model is obtained
from [38]. The values correspond to the combination of hyperparameters that performed best
in the validation set.

different inducing points are established. For this reason, we set the value of
the learning rate to 10−2 for the rest of the experiments.

In Figure 6, we examine the influence of inducing points while keeping the
learning rate fixed at 10−2. Since we have a limited number of samples, we
only use up to 128 inducing points. Although this hyperparameter affects the
model’s performance, its impact is not as significant as that of the learning
rate. As shown in Figure 6, increasing the number of inducing points appears
to worsen the results of our method. A small number of inducing points seem
to improve the performance because it summarizes well the information and
generalize better. Based on this information, we conclude that the optimal
number of inducing points is 32.

5.3. Results

After performing the ablation study, we concluded that the best result was
obtained by retraining the SimCLR method with a batch size of 256. For our
classification method, the optimal hyperparameter values were a learning rate
of 0.01 and a number of inducing points of 32. We compare our crowdsourcing
method with the same classifier trained with aggregated labels. We use three
different aggregation methods: Majority Voting, Dawid-Skene[43] and MACE
[44]. We also train the classifier with expert labels. Results are presented in
Table 3.

Our proposed CLR-GPCR outperforms all the aggregation methods, justify-
ing the use of all the labels during classifier learning and not only an aggregation
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(a) F1 score

(b) ROC AUC

(c) Accuracy

Figure 5: Each line chart represents the performance of the models trained with different
labels and different learning rates but fixing the number of inducing points. Each experiment
was repeated 10 times to estimate the mean value and the confidence interval.

of them. Furthermore, the remarkable performance of our method and Dawid-
Skene highlight the importance of explicitly modeling the bias of each annotator
(as highlights in Table 2).

Furthermore, our method also improves over the expert labels by a relative
improvement of 31%. Since histopathological analysis is an error-prone task,
we can benefit from a larger number of annotators. A sufficiently large number
of annotators may reduce the variance in the labels. In this work, we built
the dataset with 10 in-training pathologists, we can suppose that the major-
ity might be right in most cases. For example, when one is wrong or is prone
to make more mistakes, we can rely on the rest. A single mistake should not
ruin or introduce a source of sensible noise to the classifier. Although the ex-
pert labels are considered the ground truth for this data, our method leverages
crowdsourcing labels provided by non-experts.

5.4. Computational cost

Our method CLR-GPCR is scalable on the WSI size. The complexity of the
encoder network (i.e., a convolutional network) scales linear, and SVGP yields
a computational cost of O(M2Ns) where M is the number of inducing points
and Ns is the batch size [53]. Notice that the number of inducing points and
batch size remain constant regardless of the volume of data.

16



Figure 6: Comparison of the performance for different values of inducing points fixing the
value of the learning rate.

Table 3: Different metrics on the test set of the same model trained with five different types
of labels: expert, majority voting, David Skene and MACE aggregations of the non-expert
annotators, and the crowdsourcing method, which uses all the labels of the non-expert anno-
tators (without previous aggregation). Metrics are averaged across ten trials.

F1 Score Accuracy ROC AUC
Expert labels 0.6035 ± 0.0451 0.5721 ± 0.0326 0.5629 ± 0.0544

Majority Voting 0.7200 ± 0.0254 0.7186 ± 0.0240 0.7764 ± 0.0286
David Skene [43] 0.7734 ± 0.0141 0.7767 ± 0.0114 0.8873 ± 0.0072

MACE [44] 0.6797 ± 0.0667 0.6837 ± 0.0532 0.7222 ± 0.0704
CLR-GPCR 0.7911 ± 0.0177 0.7884 ± 0.0138 0.9007 ± 0.0063

The most time-consuming aspect of the training process was the SimCLR
method. The model trained with a batch size of 256 took 1.73 days to complete
using two GPUs (NVIDIA TITAN X and NVIDIA GeForce RTX 2080 Ti). The
model with a batch size of 512 required more memory and time, taking 5.13
days to be trained using two NVIDIA GeForce RTX 3090 GPUs.

In comparison, training the Gaussian processes was significantly faster. Each
model only took a few minutes to fit to the data. To conduct the hyperparameter
study, we ran each model several times, consuming a total of approximately 4
hours and 30 minutes of computation on the CPU and 1 hour and 30 minutes
on the GPU. CLR-GPCR was trained on a single GPU, NVIDIA GeForce GTX
980 Ti.

The inference time is notably short. The neural network employed to extract
embeddings has 11,560,896 parameters, and it takes 5.62 ms ± 1.07 ms to process
one patch with a MacBook Pro M1 Max. The Gaussian process contains just
51,402 parameters and is even more efficient, requiring only 223 µs ± 1.5 µs to
classify one WSI with a MacBook Pro M1 Max.

6. Conclusion and Future Work

This paper introduces CR-AI4SkIN, a new dataset of 271 WSIs containing
seven different types of spindle cell neoplasms. We design an annotation proto-
col, combining expert and non-expert annotations with global WSI labels. We
develop an automatic ROI extraction algorithm with a few expert annotations to
discard irrelevant tissue and non-tumoral areas. These ROIs were shown to the
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non-expert participants to facilitate the labeling, and we only passed the ROIs
to the classification method (to avoid memory issues). Our protocol scales and
speeds up the labeling process by distributing and alleviating the annotation
burden. To the best of our knowledge, this is the first dataset combining non-
expert annotations (crowdsourcing) with global WSI labels (Multiple Instance
Learning).

We propose and validate a Crowdsourcing-MIL method called CLR-GPCR
for WSI classification. We perform the classification in two stages. First, we use
self-supervised learning to obtain WSI representations. Second, we use crowd-
sourcing Gaussian Processes to classify the WSIs with crowdsourcing labels.
Our approach leverages the developed annotation protocol and only requires
global WSI labels provided by multiple noisy annotators.

Experimental results show the effectiveness of the proposed method and an-
notation protocol in distinguishing between malign and benign. Our method
obtains satisfying results and outperforms the widely used Majority Voting in
crowdsourcing. Our method, with non-expert labels, also outperforms the su-
pervised method trained with single expert labels.

Future work will address the multiclass classification of the seven types of
CSC neoplasms. We further improve the modeling for the annotators’ behavior
in this task, e.g., by considering the years of experience. Since we perform
the classification in two independent stages, we will further investigate how to
optimize the crowdsourcing and MIL parts end-to-end.
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Appendix A. CR-AI4SKIN database description

Appendix A.1. Medical background

The CSC neoplasms are predominantly composed of spindle-shaped neoplas-
tic cells arranged in sheets and fascicles [30]. Cutaneous spindle cell neoplasms
are relatively common. For example, cutaneous squamous cell carcinoma is the
second most common epidermal cancer representing 20 % to 50% of skin cancers
and spindle cell melanoma contributes 3% to 14% of all melanoma cases [56].
The most common neoplasms in this group are: leiomyomas (lm), leiomyosar-
comas (lms), dermatofibromas (df), dermatofibrosarcomas (dfs), spindle cell
melanomas (scm), atypical fibroxanthomas (afx) and squamous cell carcinoma
(scc), see Figure A.7 for some visual examples.

Figure A.7: Histological features of CSC neoplasms. (a) Leiomyoma, (b) leiomyosarcoma, (c)
dermatofibroma, (d) dermatofibrosarcoma, (e) spindle cell melanoma, (f) atypical fibroxan-
thoma and (g) squamous cell carcinoma.

CSC neoplasms are challenging to diagnose due to the considerable morpho-
logical overlap between the different tumor types that fall under this category
[31], which constitutes a particularly challenging problem for less experienced
pathologists. Table A.4 displays the patterns and features that distinguish the
different types of spindle cell neoplasms from one another. It is important
to evaluate the following histological features to accurately classify these neo-
plasms: (1) architectural (growth) pattern of the tumor, (2) overall cellularity,
(3) appearance of cells, (4) amount and type of matrix formation, (5) tumor
and adjacent tissue interfaces, (6) vascularity, (7) tumor necrosis, and (8) mi-
totic activity [31]. At low resolution, preserving normal architecture, zonation,
lesional symmetry, and overall cellularity aid to differentiate between benign
and malignant tumors. At high magnification, atypical mitoses and nuclear
atypia are more often associated with malignancy. In this difficult scenario,
a specific immunohistochemical panel is often needed to evaluate and classify

25



cutaneous spindle cell neoplasms. However, immunohistochemical analysis is
expensive, and the observations must be carefully interpreted in context with
other findings.

Table A.4: Histological features of spindle cell neoplasms in the dataset.

Tumor type Benignity Malignancy
Origin tumor Significant patterns Name Features Name Features

Smooth muscle cells
Spindle cells with eosinophilic

cytoplasm
Elongated nuclei ( pure form)

Leiomyoma
No mitosis (exceptional)

No frequent atypia
Leiomyosarcoma

Mitoses always present
Nuclear atypia

Connective tissue cells
Spindle cells with a swirling

or storiform pattern
Dermatofibroma

May have mitosis
Multinucleated cells
Epidermal ridges

Dermatofibrosarcoma
Few but present mitoses
No multinucleated cells
Epidermis more flattened

Melanocytic cells Spindle cell fascicles - - Spindle cell melanoma
Mitoses ≥ 2/mm2
Significant atypia

Squamous cells
Spindle cell fascicles with
variable cohesiveness

- - squamous cell carcinoma
Mitosis

Nuclear atypia

Fibroblasts
Spindle-shaped, histiocytoid
and multinucleated cells

- - Atypical fibroxanthoma3
Solar elastosis

Multinucleated cells
Atypical mitoses

Appendix A.2. Data summary

CR-AI4SkIN consists of two datasets from the University Clinic Hospital
of Valencia (HCUV) and San Cecilio University Hospital in Granada (HUSC)
of skin tissue biopsies. Each dataset, DSV for HCUV and DSG for HUSC,
comprises, respectively, 180 and 91 different patients who signed the pertinent
informed consent. The tissue samples from the different patients were sliced,
H&E stained, and digitized at 40x magnification, obtaining WSIs. Two expert
pathologists provided the WSI label for the dataset, consisting of 271 images.
Specifically, one pathologist analyzed 91 images from HSUC, and the other
pathologist analyzed the 180 images belonging to HCUV. Each WSI belongs to
one of the seven types of CSC neoplasms previously described. A summary of
the dataset is presented in Table A.5.

Table A.5: Dataset distribution. DSV: dataset from Valencia; DSG: dataset from Granada.
Lm:leiomyomas; lms: leiomyosarcomas; df:dermatofibromas; dfs: dermatofibrosarcomas; scm:
spindle cell melanomas; afx: fibroxanthomas; scc: squamous cell carcinoma.

lm lms df dfs scm afx scc Total
DSV 28 19 52 11 32 28 10 180
DSG 27 9 16 7 6 26 - 91
Total 55 28 68 28 38 44 10 271

Note that the number of WSIs is different from the one presented in subsec-
tion 3.1 due to the afx lesions were eliminated from the study as the distinction
between benign and malignant is unclear.

3For this type, the borderline between benignity and malignancy is not obvious.
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