
Highlights

• End-to-end multiple instance learning (MIL) method for hemorrhage de-

tection.

• It combines attention layer, CNN and Gaussian Process for robust train-

ing.

• The end-to-end MIL approach outperforms the two-phase MIL training

strategy.
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Abstract

Intracranial hemorrhage (ICH) is a serious life-threatening emergency caused by

blood leakage inside the brain. Radiologists usually confirm the presence of ICH

by analyzing computed tomography (CT) scans, so, developing an automated

diagnosis system that can process this type of images has become an important

research problem. One of the main challenges to apply AI algorithms in this

setting is the lack of labelled data. To mitigate the labeling burden, Multiple

Instance Learning (MIL) algorithms group instances into bags, relying solely

on bag-level labels for model training. Due to their capacity to handle uncer-

tainty and deliver accurate predictions, Gaussian Processes (GPs) stand out as

promising classifiers for MIL problems. Recent research has also demonstrated

the effectiveness of combining attention mechanisms with GPs for ICH detec-

tion. Nonetheless, existing methods have a notable limitation: they train the

attention mechanism and the GP separately, resulting in suboptimal feature
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extraction for GP-based classification. In this study, we introduce an innova-

tive end-to-end MIL model that concurrently trains the CNN backbone and

attention mechanism along with the GP classifier. Our approach enhances the

robustness and accuracy of bag predictions by optimizing feature extraction for

GP-based classification. We validate our method experimentally by focusing

on two ICH detection datasets. Our results reveal a significant performance

advantage in terms of accuracy, F1-score, precision, and ROC-AUC score over

existing MIL approaches, especially two-stage GP approaches. Additionally,

we offer empirical insights into the functionality and effectiveness of our novel

model.

Keywords: End-to-end Multiple Instance Learning; Gaussian Process;

Attention; CT hemorrhage detection

1. Introduction

Intracranial hemorrhage (ICH) is a significant medical emergency, with an

annual rate of nearly 20 cases per 100,000 people (Rajashekar and Liang, 2020),

accounting for 26% of all global strokes each year (Krishnamurthi et al., 2020).

ICH carries a relatively low 1-year survival rate of 43.5% (Huang and Chen,

2021) and only 12% to 39% of survivors achieve full recovery (An et al., 2017).

To address this critical issue, Computer-Assisted Diagnosis (CAD) aims to facili-

tate the triage process, assisting radiologists in swiftly and accurately identifying

ICH cases to save more people’s lives.

Previous studies have predominantly employed supervised deep learning

models for the detection of head hemorrhages in computed tomography (CT)

scans, with each scan slice individually labeled. For instance, Chang et al.

(Chang et al., 2018) and Chilamkurthy et al. (Chilamkurthy et al., 2018) both

leveraged 2D Convolutional Neural Networks (CNN) to make ICH predictions at

the slice level. Phong et al. (Phong et al., 2017) conducted a more extensive in-

vestigation, exploring various CNN architectures for slice-level ICH predictions.

However, a significant limitation of these methodologies is their dependency on
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labeled data for each individual slice within a scan. The manual labeling of each

slice is not only cost-intensive but also exceedingly time-consuming, resulting in

a scarcity of large datasets with comprehensive slice labels.

Since the global label appears in clinical reports, recent approaches aim to

only use scan labels for training to avoid additional labeling effort. Two research

lines using only scan labels are supervised 3D CNN and MIL methods. In the

case of 3D CNN the whole scan is considered as the input to the network. K.

Jnawali et al. (Jnawali et al., 2018), and Titano et al. (Titano et al., 2018) used

these 3D CNNs for ICH classification with satisfying results. The main problem

with 3D CNNs is that they require a large amount of memory. Moreover, they

cannot localize the injury in the scan. MIL methods overcome these problems

by processing each slice individually and then aggregating either the features or

the predictions (Carbonneau et al., 2016). They can infer intermediate labels

for the slices, helping locate the injury and need less memory.

There are several recent examples of the successful application of MIL ap-

proaches to medical images. Campanella et al. (Campanella et al., 2019) applied

a recurrent neural network as the aggregation method to combine the predic-

tions for each image of the bag. They achieved good results for the classification

of different cancer types in histopathological images. Since the aggregation de-

termines the prediction of the whole bag, the focus of the literature has been

placed on how to perform this aggregation. (Li et al., 2019) employed top-k

pooling as their aggregation scheme obtaining satisfying results on several im-

age datasets, and (Bi et al., 2021) proposed a local pyramid perception module

that emphasizes the key instances from the local scale, and a global perception

module that provides a spatial weight distribution from a global scale to classify

retinal disease. Recently, the success of attention layers has brought popularity

to its application in the MIL setting (Ilse et al., 2018). The attention mechanism

was also used in medical imaging for MIL, for example, to diagnose COVID-19

from chest CT (Han et al., 2020), to classify COVID-19 from normal pneumonia

(Qi et al., 2021) and for cancer survival prediction using Whole Slide Images

(WSIs) (Yao et al., 2020).
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All the methods discussed so far are deterministic which are prone to over-

confident predictions and to overfitting when data is scarce (Gawlikowski et al.,

2021). In medicine, this can have dramatic consequences because an inaccurate

diagnosis can lead to a wrong treatment of the patient. Probabilistic methods

like Gaussian Processes (GPs) have been proposed to overcome these limitations

and provide more accurate predictions. Furthermore, GPs are robust to over-

fitting and have good generalization capability. For supervised tasks, Wilson

et al. (Wilson et al., 2016), showed that combining GP and CNNs end-to-end,

the so-called Deep Kernel Learning (DKL) paradigm, was better than previous

works on different benchmarks like ImageNet or CIFAR. In the medical im-

age domain, DKL was used by Wu et al. (Wu et al., 2021b) achieving a good

performance in Bone Age Prediction and Lesion Localization. For MIL, the

VGPMIL (Variational Gaussian Processes for MIL) model has shown promis-

ing results when classifying histological images of Barrett’s cancer (Haußmann

et al., 2017). Y. Wu et al. (Wu et al., 2021a) combined VGPMIL with CNN to

improve the results obtained when using only the CNN. Here, the training was

performed in two different steps. First, a CNN with an attention mechanism

was trained to extract features and, in a second stage, these features were fed

into the probabilistic model VGPMIL (Haußmann et al., 2017). M. López-Pérez

et al. (López-Pérez et al., 2022) proposed an improvement of this approach by

concatenating several GPs leading to the model of Deep Gaussian Processes for

Multiple Instance Learning (DGPMIL). This classifier was more expressive and

obtained better results in ICH detection than most published work in the litera-

ture. The problem with both approaches was that they trained the model in two

phases, therefore not taking full advantage of the combination of CNN, attention

mechanism, and GP. This two-stage approach has several major drawbacks: (i)

the features are not optimized for the GP classifier because it is not trained end-

to-end, (ii) the attention mechanism is discarded in the second training phase

and during prediction and (iii) the training procedure becomes more complex

because it consists of two stages (both requiring, for example, hyperparameter

tuning, model convergence and model saving).
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This work proposes a probabilistic end-to-end model for ICH detection with

scan labels that overcomes the above mentioned problems. The proposed model

combines a 2D CNN feature extractor, attention mechanism (Ilse et al., 2018),

and GPs in an end-to-end fashion for the MIL problem. The main contributions

of our work are as follows:

• In contrast to other methods that use CNNs and the attention mechanism

(Ilse et al., 2018; Bi et al., 2020), we explore and propose how to include

the probabilistic GPs, the attention mechanism, and the CNN in an end-

to-end manner. To the best of our knowledge, this is the first time that

these three modules have been trained end-to-end in a MIL problem.

• We design two different architectures, which differ in the position of the

attention layer, before or after the GP. Both architectures are compared

theoretically and empirically to analyse the advantages and disadvantages

of each one of them. In addition, we compare our strategy to other state-

of-the-art methods and find that the end-to-end training outperforms the

two-stage training and other previous approaches.

• We also provide insightful ablation studies for the further understanding

of the model. Moreover, we find that high attention weights are corre-

lated with positive slice labels, helping to locate the slices affected by

hemorrhage, which is of high importance in the diagnostic process.

The rest of the paper is structured as follows. In section 2 we outline the

methods and theory, in section 3 we report details about the experiments and

the experimental outcomes and we conclude our work in section 4.

2. Methods/Theory

In this section we introduce the proposed approach, along with the necessary

background to understand it. Specifically, in Section 2.1 we present the main

notation and the problem formulation. In Sections 2.2 and 2.3 we introduce two

MIL methods that are at the core of our proposal. Whereas the former uses a
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deep learning based attention mechanism, the latter leverages GPs. In Section

2.4 we explain how these two approaches have been already combined to produce

a two-stage model. Finally, in Section 2.5 we present our main contribution: a

novel model that combines both algorithms in a end-to-end manner.

2.1. Notation and problem formulation

Our notation follows the standard one used in most state-of-the-art MIL

approaches (Ilse et al., 2018; Haußmann et al., 2017; Wang and Pinar, 2021).

The training data is given by a set of bags X = {Xb}b∈B and their corresponding

labels y = {yb}b∈B. We deal with a binary problem, i.e. yb ∈ {0, 1} for all b ∈ B.

Each bag Xb = {xi}i∈b contains |b| instances, i.e. b = {i1, . . . , i|b|} ⊆ [N ] (N

is the total amount of instances). In the MIL setting, one assumes that each

instance has a label, which is unknown. The MIL labelling assumption dictates

that a bag is considered positive (class 1) if at least one of its instances is

positive.

In the particular case of CT scans that we will tackle here, each Xb is a

complete CT scan, which is composed by its slices {xi}i∈b. Each slice has an

unknown label (0 for non-hemorrhage and 1 for hemorrhage), and we only have

access to the bag label yb (whether the scan is positive or not, i.e. whether it

contain at least one slice that is positive). The goal is to train a model based

only on bag labels {yb}b∈B, i.e. not having access to slice-level labels.

Notice that each slice xi is an array with shape (W,H,C), where W is

the weight of the image, H is its height, and C is the number of channels. For

computational efficiency, we will assume that all the scans have the same amount

of slices. This can be achieved by adding slices full of zeros when necessary. In

the experimental section we will see that the attention mechanism is able to

correctly handle these artificial slices full of zeros.

2.2. Convolutional neural networks for MIL

Convolutional neural networks (CNNs) are widely used in the field of image

processing. A standard CNN needs a target value for each training instance.
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However, this information is not available in the MIL scenario, where we only

have labels at bag level. Therefore, an aggregation mechanism is required to

obtain bag-level predictions. Then, a loss between such predictions and true

bag labels must be minimized.

Two important families of aggregation mechanisms have been proposed to

tackle this issue. Some approaches are based on instance-level aggregations,

where the prediction is made at instance level and such values are aggregated to

yield the bag prediction. This is the case of Additive MIL (Javed et al., 2022),

which obtains patch-wise class contributions, and ProMIL ( Lukasz Struski et al.,

2023), which aims to identify the optimal percentage of instance-level predictions

required for a positive bag prediction. However, here we will focus on embedding-

level aggregation, which has been advocated as preferable in terms of the bag

level classification performance in previous work Wang et al. (2018); Ilse et al.

(2018); Schmidt et al. (2023). The idea in this family of methods is to aggregate

the embeddings (or features) of the instances, and then obtain a prediction for

such aggregated embedding.

In our proposal we will rely on the most popular approach within embedding-

level methods, which is given by (Ilse et al., 2018). They propose an attention-

based aggregation mechanism, which allows detection of the most relevant in-

stances that trigger the bag label. Specifically, the aggregated embedding is

given by a weighted average of the instance embeddings, i.e. hagg =
∑

i∈b ai ·hi.

The weights ai are calculated through an attention layer:

ai =
exp{wT tanh(Vhi)}∑
j∈b exp{wT tanh(Vhj)}

, (1)

where w and V are parameters to be estimated during training. In the sequel,

this method will be referred to as Att-MIL.

2.3. Gaussian Processes for MIL

In the machine learning community, Gaussian Processes (GPs) are widely

used in supervised problems due to their excellent capability to quantify un-

certainty (Williams and Rasmussen, 2006). In the last years, GPs have been
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extended to the MIL scenario, where uncertainty is of great importance (recall

that instance labels are unknown). Among the different formulations that have

been proposed for GP-MIL (Kim and De la Torre, 2010; Kandemir et al., 2016),

the most popular approach nowadays is VGPMIL (Haußmann et al., 2017),

which has been extended later in several directions, e.g. (Wang and Pinar,

2021; Yousefi et al., 2019).

VGPMIL leverages a GP classification model to describe the (unknown)

instance labels. Then, the observed bag labels are modelled from such instance

labels through a bag-likelihood that codifies the MIL assumption: a bag will

be positive if at least one of its instances is positive (see (Haußmann et al.,

2017, eq.(3)) for full details on the formulation). Moreover, since standard

GPs are characterized by a restrictive O(N3) computational complexity on the

number of training instances N , VGPMIL resorts to sparse GPs (Snelson and

Ghahramani, 2006).

The idea behind sparse GPs is to summarize the information contained in the

N training instances through a set of M ≪ N inducing points u = {um}Mm=1.

These values u are GP realizations at M locations Z = {zm}Mm=1, just like

f = {fn}Nn=1 are GP realizations at the input locations X = {xn}Nn=1. In order

for the information to flow from u to f , notice that the joint distribution on

(u, f) is given by:

p(u) = N (u|0,KZZ), (2)

p(f |u) = N (f |KXZK
−1
ZZu,KXX −KXZK

−1
ZZKZX), (3)

where KAB refers to the GP kernel evaluated on datasets A and B, i.e. KAB =

κ(A,B).

2.4. The two-stage strategy

The strengths of deep learning and GPs are complementary. Whereas the

former can extract abstract features that lead to accurate predictions, the latter

provides uncertainty estimation that guarantees robustness and allows for reli-

able decision-making (Khan et al., 2019). Consequently, in the last years there
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has been a growing effort to combine both approaches in standard supervised

problems (i.e. no MIL). For instance, deep kernel learning (Wilson et al., 2016)

and deep Gaussian processes (Salimbeni et al., 2019; Svendsen et al., 2020) have

obtained promising results, and they are very active research fields nowadays

(Ober et al., 2021; Ober and Aitchison, 2021).

In the field of MIL, the first attempt to combine deep learning and GPs

was recently presented in (Wu et al., 2021a). In addition to the aforementioned

complementarity of both techniques, the motivation for the authors of (Wu et al.,

2021a) was to develop a method to apply VGPMIL on images. Indeed, notice

that directly feeding VGPMIL with images is challenging, since GPs struggle

when dealing with high-dimensional input spaces (as those implied by images)

(Blomqvist et al., 2019). Consequently, the work (Wu et al., 2021a) provides a

two-stage algorithm to first extract features from each instance with Att-MIL

(described in Section 2.2), and then feed those features to an uncertainty-aware

model such as VPGMIL (described in Section 2.3). Notice that the features

extracted during the first stage are considered fixed/frozen for the second stage.

In this paper, the method introduced in (Wu et al., 2021a) will be referred

to as 2SS (two-stage strategy). More specifically, two variants are proposed

for 2SS in (Wu et al., 2021a), depending on whether the extracted features

are multiplied or not by the attention weights before being fed to VGPMIL.

Following their notation, these variants will be called here 2SS-AL-Aw and 2SS-

AL-nAw, respectively. The complete details for their proposal can be found in

(Wu et al., 2021a, Section 2), in particular see their Figure 1.

Very recently, the two-stage strategy proposed in (Wu et al., 2021a) has

been improved by using deep GPs instead of GPs. This method will be referred

to as DGPMIL (López-Pérez et al., 2022), and it will be also included as a

state-of-the-art baseline in the experiments.

2.5. End-to-end model

Since 2SS is trained in two stages, the features extracted in the first step

may not be the optimal ones for the second step. Our goal is to introduce
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an algorithm that performs an end-to-end training of CNNs and GPs in the

context of MIL. Based on previous experience (think for instance in the general

improvement obtained by deep learning over hand-crafted features (Goodfellow

et al., 2016)), we hypothesize that such end-to-end process will ultimately lead

to a better performance in practice.

Notice that there are three key components in 2SS: the CNN, the atten-

tion module, and the GP. The first two elements are trained in the first stage

(they are part of Att-MIL), and the third one is trained in the second stage (it

is part of VGPMIL). In our method we leverage the same three components.

Naturally, the CNN is applied in the first place to perform the feature extrac-

tion. Depending on the order of the other elements, we propose two different

end-to-end (E2E) approaches, which are described next.

E2E-Att-GP. In this case, the attention mechanism is used before the GP.

Specifically, the attention module receives the features extracted by the CNN

from each instance, and outputs a feature vector for each bag, following eq. (1).

Notice that this is a deterministic feature vector. Then, a probabilistic transfor-

mation is performed through a sparse GP layer, to introduce uncertainty in the

model. Each sparse GP is described in eqs. (2)–(3), where the GP is evaluated

at the location of the extracted features of the bag, i.e., the weighted average

of the instance features using the attention mechanism. Finally, we use a dense

layer with sigmoid activation to obtain the probability that a bag is class one,

which is denoted pb. Figure 1 illustrates the described architecture.

E2E-GP-Att. In this case, the GP is applied before the attention module.

Namely, a sparse GP layer transforms the features extracted by the CNN from

each instance, yielding stochastic features at instance level. Each sparse GP is

described in eqs. (2)–(3). To propagate this stochasticity, we leverage sampling

from the GP output. Therefore, the attention module receives the GP realiza-

tions and outputs a new feature vector for each bag, using eq. (1). Finally, we

use a dense layer with sigmoid activation to obtain the probability that the bag

is class one, which is denoted pb. Figure 2 illustrates the described architecture.

In order to train both models, we use the cross-entropy (CE) loss between
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the observed bag labels yb and the predicted probabilities at bag level pb:

LCE = − 1

B

∑
b∈B

[yb log(pb) + (1 − yb) log(1 − pb)] . (4)

However, it is well-known that using this loss alone usually leads to over-fitting.

As a consequence, different regularizers have been proposed in deep learning

(Kukacka et al., 2017). Here we leverage a regularizer based on the Kullback-

Leibler (KL) divergence, which is common in the GP literature (Ruiz et al.,

2019). Specifically, our loss is:

L = (1 − α) · LCE + α · KL(q(U)||p(U)), (5)

where α ∈ (0, 1) regulates the weight of each term, LCE is given by eq. (4),

p(U) is the prior distribution over the sparse GPs in the sparse GP layer, and

q(U) is the posterior distribution (which is a Gaussian with parameters to be

estimated). The KL divergence between two distributions is always greater than

zero, and equals zero if and only if both distributions coincide. Therefore, the

KL regularizer encourages the posterior distribution over U to stay close to the

prior one. The loss in eq. (5) is minimized end-to-end with respect to all the

model parameters, including the weights of the CNN, the attention parameters,

and the posterior GP parameters (i.e. the mean vectors and covariance matrices

of q(U)). In the experiments we will evaluate the behavior of E2E-Att-GP and

E2E-GP-Att for different values of α. In particular, the case α = 0.5 corresponds

to the minimization of the negative lower bound of the log-likelihood of the

observations.

For the inference process, the GP in our end-to-end architecture acts as an

additional layer that receives the input features of the previous layer and outputs

realizations of a probability distribution to the subsequent layer. We follow

standard variational inference for sparse Gaussian Processes as in Hensman

et al. (2015). Namely, the procedure for inference is as follows:

1. The GP layer builds the prior distribution p(u) of the inducing points

with eq. (2). This distribution is computed using the kernel function and

the inducing point locations.
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2. The GP layer approximates the posterior distribution p(f |u,y) of the GP

using the conditional prior in eq. (3), the approximated posterior q(U)

and the input features. Notice that this can be done in closed form, since

both p(f |u) and q(U) are Gaussian distributions.

3. By minimizing eq. (5), the GP layer estimates an approximation q(U).

4. Finally, the output of the GP layer is a sample of the approximated pos-

terior distribution p(f |u,y), which is forwarded to the subsequent layer.

Finally, in order to make predictions on a new bag, we propagate it through

the three different layers (CNN, Attention, and GP). Whereas the former two

are deterministic, the latter is probabilistic, so samples are obtained (from the

GP output distribution) and propagated all the way to the model output. The

final prediction is the mean over the different samples. Also, note that the

dropout included in the CNN layers is disabled during test time. The complete

experimental details are provided in Section 3.2, as well as in the Appendix.

3. Results and Discussion

In this section we validate empirically the proposed method. In Section 3.1

we introduce the used data and its processing, and in section 3.2 we provide de-

tails about the experimental setup. Then, in section 3.3 we show ablation studies

for the two proposed methods, and in section 3.4 we compare our methods to

other state-of-the-art approaches. Finally, in section 3.5 we provide insights on

the importance of the attention layer, and in section 3.6 we show some relevant

visualizations to illustrate the behavior of our methods. The code with our

implementation will be publicly available upon acceptance of the paper.

3.1. Dataset and preprocessing

Our model is trained against the dataset of head CT images from the 2019

Radiological Society of North America (RSNA) challenge (https://kaggle.com/competitions/rsna-

intracranial-hemorrhage-detection). Each tomography contains between 24 and

57 slice images. Due to the implementation constraints imposed by the Python
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Figure 1: The proposed model architecture of E2E-Att-GP. Each slice of the CT scan is first

processed by a feature extractor which consists of a Convolutional Neural Network (CNN)

that is applied equally to each input slice in parallel. The resulting feature vectors enter

an attention mechanism consisting of two Fully Connected (FC) layers and a Softmax (SM)

layer, calculating one attention weight for each of them. The (attention-) weighted sum

of the feature vectors then enters a Sparse Gaussian Process (SGP) and final FC layer for

classification. The novel combination of attention mechanism and SGP can be trained end-

to-end. The distinction between deterministic and stochastic features is highlighted by using

purple and red colors, respectively. The digits in brackets (·) refer to the size and the number

of kernels in the CNN layers.

libraries we use (i.e., GPflow and GPFlux), all bags need to have the same num-

ber of slices. To achieve this, we add black images to the bags whose number

of slices is smaller than the maximum slice number to make sure all bags are

in the same size of 57. Apart from that, each slice is also preprocessed (i.e.,

the windowing strategy) by using the same approach as described in (Wu et al.,

2021a) to change the image brightness and apparent contrast to enhance the

appearance of different types of tissues.

The model is trained on 1000 bags, with 411 positive values (i.e., ICH scans)

and 589 negative values (i.e., normal scans). In addition, the testing is done
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Figure 2: The proposed model architecture of E2E-GP-Att. In this variant, the Sparse Gaus-

sian Process (SGP) follows directly after the Convolutional Neural Network (CNN). Both are

applied equally to each input slice in parallel. The output of the SGP enters the attention

layer which is analogous to the one used for E2E-Att-GP, see Figure 1. After combining the

feature vectors with the attention weights and adding them up, a simple Fully Connected (FC)

layer performs the final classification. The distinction between deterministic and stochastic

features is highlighted by using purple and red colors, respectively. The digits in brackets (·)

refer to the size and the number of kernels in the CNN layers.

using a separate dataset of 150 bags, with 72 positive values and 78 negative

values. We use the same dataset as in (Wu et al., 2021a) and (López-Pérez

et al., 2022). To stress the inherent difficulty of the problem, Figure 3 shows

some examples of positive and negative slices as labelled by the clinicians. Notice

that the distinction is not straightforward at all for a non-expert evaluator.

To assess the generalization capability of our model, we conduct evaluations

on the external dataset CQ500 (Chilamkurthy et al., 2018), which comprises a

total of 490 CT scans. These scans consist of 285 normal CT scans and 205 scans

with annotations provided only at scan level. The number of slices within each

scan varies, ranging from 16 to 128 slices. While maintaining consistent bag

sizes during the training phase, we allow for variable bag sizes during testing.

This approach ensures that the test set adheres to the same windowing strategy
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Negative slices

Positive slices

Figure 3: Some examples of positive and negative slices in the RSNA test set as labelled by

expert clinicians. Notice that the task of ICH detection is a challenging one, since differences

between positive and negative instances are not straightforward for a non-expert.
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Table 1: The results for E2E-Att-GP. The values for each metric denote the mean and stan-

dard deviation from five experimental trials. The first column indicates the combination of

hyperparameters used. The first number is the scaling factor α from eq. (5), and the second

is the number of inducing points used by the sparse GP. The best results are highlighted in

bold. The asterisk ’*’ means that the comparison with the performance of model pairs is

statistically significant (p < 0.05).

Configuration Accuracy F1 Precision Recall ROC-AUC

0.1, 50 0.849 ± 0.014 0.875 ± 0.009 0.823 ± 0.020 0.936 ± 0.022 0.937 ± 0.006

0.5, 50 0.873 ± 0.020 0.872 ± 0.015 0.844 ± 0.031* 0.902 ± 0.034 0.938 ± 0.005

0.9, 50 0.836 ± 0.031 0.878 ± 0.018 0.818 ± 0.033 0.947 ± 0.036 0.937 ± 0.009

0.1, 100 0.852 ± 0.010 0.875 ± 0.008 0.818 ± 0.027 0.943 ± 0.026 0.964 ± 0.003

0.5, 100 0.876 ± 0.023* 0.886 ± 0.011* 0.825 ± 0.032 0.959 ± 0.025 0.965 ± 0.007*

0.9, 100 0.861 ± 0.018 0.879 ± 0.013 0.820 ± 0.029 0.947 ± 0.025 0.961 ± 0.006

0.1, 150 0.807 ± 0.009 0.830 ± 0.007 0.725 ± 0.010 0.972 ± 0.012* 0.924 ± 0.003

0.5, 150 0.850 ± 0.010 0.869 ± 0.011 0.833 ± 0.023 0.909 ± 0.022 0.949 ± 0.005

0.9, 150 0.820 ± 0.021 0.875 ± 0.016 0.812 ± 0.049 0.949 ± 0.026 0.945 ± 0.010

preprocessing, without the inclusion of any black images.

3.2. Experimental design

Since the proposed model is stochastic, we need to run several trials for each

experiment in order to obtain a robust value of each metric associated with

the model. Hence, we run each experiment five times to obtain the mean and

standard deviation for each metric.

Moreover, to have a deeper insight into how the model is performing, we

use five different metrics in this classification task. The accuracy is the one

with the most intuitive explanation. The Area Under the Receiver Operating

Characteristic Curve (ROC-AUC) tells how well the model is separating the

classes without giving any preference to any threshold. In addition, precision,

recall, and F1 score, i.e., the harmonic mean between precision and recall, are

used together to avoid the effects of the imbalanced dataset on the evaluation.

Furthermore, our approach involves optimizing two key hyperparameters:

the number of the inducing points and the scaling factor α (as per Eq. (5)). In

our ablation studies, we systematically explore various combinations of these

hyperparameters to assess their impact on model performance. Furthermore, to
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Table 2: The results for E2E-GP-Att. The values for each metric denote the mean and

standard deviation from five experimental trials. The first column indicates the combination

of hyperparameters used. The first number is the scaling factor α from eq. (5), and the second

is the number of inducing points used by the sparse GP. The best results are highlighted in

bold. The asterisk ’*’ means that the comparison with the performance of model pairs is

statistically significant (p < 0.05).

Configuration Accuracy F1 Precision Recall ROC-AUC

0.1, 50 0.804 ± 0.053 0.849 ± 0.049 0.785 ± 0.089 0.937 ± 0.050 0.947 ± 0.007

0.5, 50 0.812 ± 0.041 0.825 ± 0.028 0.722 ± 0.056 0.963 ± 0.021* 0.945 ± 0.006

0.9, 50 0.773 ± 0.059 0.800 ± 0.047 0.694 ± 0.087 0.944 ± 0.049 0.925 ± 0.014

0.1, 100 0.835 ± 0.028 0.843 ± 0.020 0.752 ± 0.075 0.959 ± 0.030 0.953 ± 0.011

0.5, 100 0.856 ± 0.021* 0.879 ± 0.015* 0.823 ± 0.041* 0.944 ± 0.022 0.964 ± 0.005*

0.9, 100 0.822 ± 0.030 0.839 ± 0.040 0.745 ± 0.092 0.961 ± 0.027 0.949 ± 0.012

0.1, 150 0.787 ± 0.055 0.804 ± 0.044 0.717 ± 0.079 0.917 ± 0.044 0.915 ± 0.023

0.5, 150 0.847 ± 0.029 0.872 ± 0.039 0.799 ± 0.062 0.960 ± 0.020 0.940 ± 0.017

0.9, 150 0.822 ± 0.040 0.877 ± 0.020 0.809 ± 0.047 0.958 ± 0.020 0.938 ± 0.014

rigorously compare the results obtained with different models, we employ the

Wilcoxon signed-rank test (Rosner et al., 2006), a non-parametric statistical

method. This test is used to determine whether the medians of two paired

groups, based on their evaluation metric results, exhibit statistically significant

differences. We consider the comparison to be statistically significant if the

calculated p-value is less than 0.05.

Other experimental details include the Adam optimizer choice with an initial

learning rate of 10−4, and the early stopping criterion to decide when to stop

the training process with a patience of 8. We split the training dataset into

training (75%) and validation (25%) according to the number of bags. The

evaluation is based on the ROC-AUC score, so whenever the score does not

improve for 8 consecutive epochs in the validation dataset, the training process

is completed. The training and testing processes are performed on three GPUs

(Nvidia Quadro RTX 8000) using Tensorflow 2.7 and Python 3.7.

3.3. Results

The results are shown in Table 1 for E2E-Att-GP and in Table 2 for E2E-

GP-Att. In both tables, the first column shows the combination of different
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Table 3: Comparison between the best performing E2E-Att-GP, the best performing E2E-

GP-Att and other state-of-the-art results on the same RSNA dataset. We can clearly see

that both of our architectures outperform current state-of-the-art models, while E2E-Att-GP

performs slightly better than E2E-GP-Att. The asterisk ’*’ means that the comparison with

the performance of model pairs is statistically significant (p < 0.05).

Methods with the same dataset

Methods Accuracy F1 Precision Recall ROC-AUC

E2E-Att-GP 0.876 ± 0.023* 0.886 ± 0.011* 0.825 ± 0.032 0.959 ± 0.025 0.965 ± 0.007

E2E-GP-Att 0.856 ± 0.021 0.879 ± 0.015 0.823 ± 0.041 0.944 ± 0.022 0.964 ± 0.005

DGPMIL(López-Pérez et al., 2022) 0.825 ± 0.006 0.839 ± 0.006 N/A N/A 0.957 ± 0.011

2SS-AL-nAw(Wu et al., 2021a) 0.780 ± 0.089 0.814 ± 0.059 0.705 ± 0.099 0.975 ± 0.025 0.964 ± 0.006

2SS-AL-Aw(Wu et al., 2021a) 0.743 ± 0.176 0.794 ± 0.104 0.705 ± 0.172 0.944 ± 0.043 0.951 ± 0.010

Att-MIL 0.781 ± 0.023 0.811 ± 0.017 0.694 ± 0.023 0.975 ± 0.021 0.951 ± 0.011

Other methods with different dataset

Methods Model Labeling Dimension ROC-AUC

Sato et al.(Sato et al., 2018) Convolutional auto-encoder 3D scans 0.87

Arbabshirani et al.(Arbabshirani et al., 2018) starightforward CNNs 3D scans 0.85

Titano et al. (Titano et al., 2018) ResNet 50 3D scans 0.73

Saab et al. (Saab et al., 2019) Multiple instance learning 3D scans 0.91

Patel et al.(Patel et al., 2019) VGG-like + LSTM 2D slices 0.96

Chang et al.(Chang et al., 2018) Mask R-CNN like 2D slices 0.98

values of the scaling factor α and number of inducing points. For example,

”0.1, 50” means that the scaling factor is 0.1 and the number of inducing points

is 50. Other columns show the mean and deviation for each metric for five

experimental trials, with the best performing model highlighted in bold for

each metric.

In both tables, the results show that the scaling factor of 0.5 for a given

number of inducing points achieves the best result for most metrics. In other

words, the model achieves the best performance when the KL divergence is

of equal importance as the cross-entropy. Another interesting finding is that

the number of inducing points affects the performance of the model in a non-

linear way, which indicates that more inducing points do not necessarily result in

better performance. This is positive because using more inducing points requires

more computational power. In this study, we found that 150 was the maximum

number of inducing points we could use without getting out of memory, while

the best performing model only required 100 inducing points for both tables.
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Table 4: Comparison between the best performing E2E-Att-GP, the best performing E2E-

GP-Att and other state-of-the-art method on the same external testing CQ500 dataset. The

asterisk ’*’ means that the comparison with the performance of model pairs is statistically

significant (p < 0.05).

Metrics 2SS-AL-nAw Att-MIL DGPMIL E2E-Att-GP E2E-GP-Att

(Wu et al., 2021a) (Ilse et al., 2018) (López-Pérez et al., 2022)

Accuracy 0.639±0.106 0.655±0.043 0.717±0.035 0.796±0.018* 0.756±0.023

F1 0.693±0.058 0.700±0.023 0.735±0.022 0.785±0.017* 0.736±0.031

ROC-AUC 0.906±0.010 0.906±0.010 0.909±0.005 0.918±0.003* 0.912±0.003

Cohen’s kappa 0.335±0.171 0.359±0.069 0.461±0.059 0.594±0.035* 0.509±0.048

Table 5: Metrics of the models substituting the attention layer by the maximum aggregation.

The variability is reduced by sampling 100 different measures from the GP and averaging the

results at the end.

Metrics Accuracy F1 Precision Recall ROC-AUC

E2E-Att-GP 100 samples 0.480 ± 0 0.649 ± 0 0.480 ± 0 1 ± 0 0.625 ± 0.003

E2E-GP-Att 100 samples 0.505 ± 0.003 0.659 ± 0.001 0.492 ± 0.002 1 ± 0 0.759 ± 0.002

3.4. Comparisons with the state of the art

First, we compare our model with others using exactly the same training and

testing data cohorts, including DGPMIL (López-Pérez et al., 2022), the model

with two separate training steps (2SS-AL-nAw, 2SS-AL-Aw ) (Wu et al., 2021a)

and Att-MIL (i.e., only the CNN model with Att layer), as shown in Table 3.

We can observe that E2E-Att-GP and E2E-GP-Att outperform DGPMIL, 2SS-

AL-nAw and 2SS-AL-Aw in most metrics with an accuracy of 0.876, F1 score

of 0.886, precision of 0.825 and ROC-AUC of 0.965 while the difference between

E2E-Att-GP and E2E-GP-Att is significant in accuracy and F1 score but not

in precision and ROC-AUC. Although the recall is worse than Att-MIL and

2SS-AL-nAw, our method significantly outperforms them in all other metrics,

which shows that our approach is less prone to false positives so it produces

better predictions in general. The comparison with Att-MIL shows that GP

plays a significant role in improving model performance. In addition, the direct

comparison with 2SS-AL-nAw and 2SS-AL-Aw shows that the model with an

end-to-end training strategy performs better than the same model architecture
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but with two separate training steps. The reason for this is that, the end-to-end

training optimizes the parameters of the CNNs, attention layer and GP together

while if they are trained separately, the features extracted from CNNs may not

be optimal for GP.

Regarding the model complexity, it is in the same order of magnitude as the

baselines. The number of parameters is 152,487 for E2E-Att-GP and 95,359

for E2E-GP-Att. As a comparison, the number of parameters for DGPMIL is

122,346 parameters. Furthermore, the proposed models are efficient and able

to be run on consumer hardware. For instance, inference for one sample takes

around 200ms on a MacBook Pro M1 Max for E2E-GP-Att and E2E-Att-GP.

To demonstrate the generalization capabilities of our approach, we resort to

the external test dataset, CQ500 (Chilamkurthy et al., 2018). Notice that we

are not training on this new dataset, but using the methods previously trained

on the RSNA dataset. The results are included in Table 4. Notably, both E2E-

Att-GP and E2E-GP-Att demonstrate outstanding performance, significantly

better than other models across all evaluation metrics. Furthermore, E2E-Att-

GP performs better than E2E-GP-Att, which aligns with the findings presented

in Table 3. The results provided in Table 4 show the efficacy of our model in

adapting to test CT scans acquired from diverse scanner settings, confirming the

robust generalization capabilities inherent to the end-to-end training scheme.

We further compare our approach with other methods using different datasets

in ICH diagnosis. As multiple different metrics are evaluated in these methods,

we choose ROC-AUC score to compare the model performances. Since no avail-

able codes are recently public for these methods, it is challenging to train the

other methods on our dataset to have a fair comparison. However, although dif-

ferent dataset are utilized, we can see that E2E-Att-GP and E2E-GP-Att out-

perform methods training with 3D scan labels (Sato et al., 2018; Arbabshirani

et al., 2018; Titano et al., 2018; Saab et al., 2019) and have a comparable (Chang

et al., 2018) or even a higher ROC-AUC score (Patel et al., 2019) compared to

models using 2D slice labels. The results are promising, because manually la-

beling each slice is tedious and time-consuming for radiologists, while the scan
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Figure 4: Histogram representing the distributions of the attention weights separated by the

type of slice. The values were computed by taking the average of the attention weights for

real and artificial images separately in each bag.

labels can be easily accessed from patients clinical reports. Therefore, since our

method achieves a comparable performance on ICH diagnosis, they can greatly

reduce the workload of radiologists and potentially, improve the clinical triage

system.

3.5. The explainabilty of ”attention”

In this section, we analyze the relevance of the attention layer as one of the

three components of our end-to-end methodology. Overall, we have three find-

ings from our experiments: 1. substituting the attention layer by the maximum

aggregation worsens the result; 2. the attention weights are correlated with the

slice labels; 3. the attention layer is correctly identifying the added black slices

that fill the bag, which proves that they have no harmful effect on the training

process.

First, to show the importance of the attention layer, we utilize a way of
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Scan 4

(a) 0.0582 (b) 0.0497 (c) 0.0475 (d) 0.0471

Scan 9

(e) 0.0649 (f) 0.0369 (g) 0.0366 (h) 0.0306

Scan 10

(i) 0.0835 (j) 0.0818 (k) 0.0644 (l) 0.0551

Figure 5: Each row corresponds to a different scan, and shows the four slices that were assigned

the highest attention values in that scan. Importantly, all these slices are labelled as positive

by the experts in the database, which stresses that there exists a correlation between high

attention weight and the presence of ICH. The images are ordered from left to right by the

estimated attention weight, which is shown below each image.
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(a) E2E-GP-Att (b) E2E-Att-GP

Figure 6: t-SNE of the latent vectors of scans as produced by the two models previous to

applying the last layer to generate the probabilities.

substituting the attention layer by a maximum aggregation, which has been

used in several studies as a way to work in MIL (Campanella et al., 2018,

2019). The modifications for the experiment consist of applying the layer after

the attention layer (i.e., GP in E2E-Att-GP and a dense layer in E2E-GP-Att)

equally to all slices, and then, applying the maximum operation to generate

one outcome prediction. This modification is reasonable because the attention

layer is designed to carefully select the slices, so the latent spaces of the image

will remain the same without the attention layer. Therefore, the layers after

the attention layer can be applied to the feature vectors before the attention

layer, and we only add the maximum operation at the end to generate one final

probability.

The results for the modified E2E-Att-GP and E2E-GP-Att model are shown

in Table 5. We see a significant drop in performances for all metrics. A possible

explanation for this is that hemorrhages normally do not just occur on one slice

of the head but on several different regions of the brain. Slices are different

sections of the same brain separated by a small spacing distance, so they are

not independent from each other. For that reason, detecting hemorrhages is a

matter of looking into several slices like a radiologist. However, by removing
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the attention layer, the GP needs to detect the hemorrhage at each individual

slice without taking into account any possible relationships between the slices,

while the attention layer is the one that can weight on all the slices to find that

relationship. For that reason, working at each slice individually without further

looking at other slices makes the modified model lack this spatial information,

leading to much worse performance compared to using the attention layer.

For our second finding, we analyze the relationship between the estimated

attention values and the ground truth label (which is known for test instances).

Similarly to previous MIL approaches using attention (Ilse et al., 2018; Schmidt

et al., 2023; Wu et al., 2023), we expect that slices with ICH are assigned higher

values of attention than those not presenting ICH. Indeed, we find that the

mean of the attention weights for positive slices is 0.023, whereas for negatives

it is 0.016. Notice that the average is 43% higher for positive slices. This

quantitative result, which takes into account all the data, is complemented with

some qualitative examples showing that the highest attention values in positive

bags are usually assigned to positive slices, see Figure 5l.

Finally, the third interesting finding is that the attention layer can correctly

identify which slices are artificially generated (i.e., the black slices). To prove

this, we generate the attention weight for each slice of the testing dataset and

take two mean values: one for the artificial slices and one for the real slices.

Figure 4 illustrates their respective distributions. It is straightforward to find

that the mean is higher for the real slices, demonstrating that the attention

layer is assigning more attention to real slices. Moreover, in 81% of the bags,

the mean values of the weights from the real slices are higher than those from

the artificial slices. There is some variance shown in both distributions, but

overall, the attention layer is able to correctly ignore the images that are added

to the bags, which indicates that the attention layer is trained to learn important

features.
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3.6. Visualizations

To depict how well the classes are separated in their corresponding latent

spaces of E2E-GP-Att and E2E-Att-GP, we show two t-distributed stochastic

embedding (t-SNE) plots of the latent vectors by extracting features from the

last fully connected layer. t-SNE is used to visualize high-dimensional feature

vectors in a two or three dimensional map, so after t-SNE, the dimensionality

of each scan reduces from 8 to 2. The result for E2E-GP-Att and for E2E-

Att-GP is shown in Figure 6. Except for some outliers, each figure shows two

well-separated clusters representing each class, meaning that the internal rep-

resentations of bags the models have learned are discriminative enough for this

classification task.

Apart from classifying bags, the model can also be used to detect which slices

are more important for the model to be predicted as positive. The attention

layer provides an score for each slice that can be interpreted as the probability of

such slice to be positive, as shown in Figure 5. Therefore, the attention weights

can potentially be used to indicate instance predictions by only training on bag

labels.

4. Conclusions and future work

This work proposes two architectures that combine convolutional neural net-

works, an attention layer, and Gaussian processes with end-to-end training. We

show that the end-to-end model performs better than previous works, trained

in two separate phases. To the best of our knowledge, this is the first work

that combines CNN, attention, and GP into one architecture in an end-to-end

manner for multiple instance learning.

When evaluating the model with the RSNA dataset, we obtain a slightly

better ROC-AUC score, and considerably higher accuracy and F1 than previ-

ous state-of-the-art models. We find that applying the attention module before

the GP leads to better results than the other way around. However, both ar-

chitectures score higher than previous approaches, showing that different com-
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binations of CNN, attention layer, and GP achieve state-of-the-art predictions

as long as they are trained end-to-end. These positive empirical findings also

apply to the generalization capability of our approach, as shown in the external

validation with the CQ500 dataset.

In the future, a more complex classifier with Deep Gaussian Processes could

even achieve a higher performance when trained end-to-end with the feature

extractor and attention mechanism. Furthermore, the use of more sophisticated

attention mechanisms, as well as alternative DL models, is an interesting line

of research to further improve the accuracy. Other challenging MIL scenarios,

such as utilizing 3D patches, should be addressed in future work too.
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ported by the University of Granada postdoctoral program “Contrato Puente”.

References

An, S. J., Kim, T. J., and Yoon, B.-W. (2017). Epidemiology, risk factors,

and clinical features of intracerebral hemorrhage: An update. J Stroke,

19(1):3–10.

Arbabshirani, M. R., Fornwalt, B. K., Mongelluzzo, G. J., Suever, J. D., Geise,

B. D., Patel, A. A., and Moore, G. J. (2018). Advanced machine learning in

action: identification of intracranial hemorrhage on computed tomography

scans of the head with clinical workflow integration. NPJ digital medicine,

1(1):1–7.

27



Bi, Q., Qin, K., Li, Z., Zhang, H., Xu, K., and Xia, G.-S. (2020). A multiple-

instance densely-connected convnet for aerial scene classification. IEEE

Transactions on Image Processing, 29:4911–4926.

Bi, Q., Yu, S., Ji, W., Bian, C., Gong, L., Liu, H., Ma, K., and Zheng, Y.

(2021). Local-global dual perception based deep multiple instance learning

for retinal disease classification. In de Bruijne, M., Cattin, P. C., Cotin, S.,

Padoy, N., Speidel, S., Zheng, Y., and Essert, C., editors, Medical Image

Computing and Computer Assisted Intervention – MICCAI 2021, pages

55–64, Cham. Springer International Publishing.

Blomqvist, K., Kaski, S., and Heinonen, M. (2019). Deep convolutional gaus-

sian processes. In Joint European Conference on Machine Learning and

Knowledge Discovery in Databases, pages 582–597. Springer.

Campanella, G., Hanna, M. G., Geneslaw, L., Miraflor, A., Werneck

Krauss Silva, V., Busam, K. J., Brogi, E., Reuter, V. E., Klimstra,

D. S., and Fuchs, T. J. (2019). Clinical-grade computational pathology

using weakly supervised deep learning on whole slide images. Nat Med,

25(8):1301–1309.

Campanella, G., Silva, V. W. K., and Fuchs, T. J. (2018). Terabyte-scale deep

multiple instance learning for classification and localization in pathology.

CoRR, abs/1805.06983.

Carbonneau, M., Cheplygina, V., Granger, E., and Gagnon, G. (2016). Multiple

instance learning: A survey of problem characteristics and applications.

CoRR, abs/1612.03365.

Chang, P. D., Kuoy, E., Grinband, J., Weinberg, B. D., Thompson, M., Homo,

R., Chen, J., Abcede, H., Shafie, M., Sugrue, L., Filippi, C. G., Su, M.-Y.,

Yu, W., Hess, C., and Chow, D. (2018). Hybrid 3D/2D convolutional neural

network for hemorrhage evaluation on head CT. AJNR Am J Neuroradiol,

39(9):1609–1616.

28



Chilamkurthy, S., Ghosh, R., Tanamala, S., Biviji, M., Campeau, N. G., Venu-

gopal, V. K., Mahajan, V., Rao, P., and Warier, P. (2018). Development

and validation of deep learning algorithms for detection of critical findings

in head CT scans. CoRR, abs/1803.05854.

Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., Kruspe,

A. M., Triebel, R., Jung, P., Roscher, R., Shahzad, M., Yang, W., Bamler,

R., and Zhu, X. X. (2021). A survey of uncertainty in deep neural networks.

CoRR, abs/2107.03342.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Han, Z., Wei, B., Hong, Y., Li, T., Cong, J., Zhu, X., Wei, H., and Zhang, W.

(2020). Accurate screening of COVID-19 using Attention-Based deep 3D

multiple instance learning. IEEE Trans Med Imaging, 39(8):2584–2594.

Haußmann, M., Hamprecht, F. A., and Kandemir, M. (2017). Variational

bayesian multiple instance learning with gaussian processes. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 6570–6579.

Hensman, J., De G. Matthews, A., and Ghahramani, Z. (2015). Scalable varia-

tional Gaussian process classification. In International conference on arti-

ficial intelligence and statistics, pages 351–360.

Huang, C. and Chen, J.-C. (2021). The Long-Term survival of intracranial

hemorrhage patients successfully weaned from prolonged mechanical venti-

lation. Int J Gen Med, 14:1197–1203.

Ilse, M., Tomczak, J., and Welling, M. (2018). Attention-based deep multi-

ple instance learning. In International Conference on Machine Learning -

ICML, pages 2127–2136.

Javed, S. A., Juyal, D., Padigela, H., Taylor-Weiner, A., Yu, L., and Prakash, A.

(2022). Additive mil: Intrinsically interpretable multiple instance learning

for pathology. In Neural Information Processing Systems.

29



Jnawali, K., Arbabshirani, M. R., Rao, N., and Patel, A. A. (2018). Deep

3d convolution neural network for ct brain hemorrhage classification. In

Medical Imaging.

Kandemir, M., Haußmann, M., Diego, F., Rajamani, K. T., Van Der Laak,

J., and Hamprecht, F. A. (2016). Variational weakly supervised gaussian

processes. In Richard C. Wilson, E. R. H. and Smith, W. A. P., editors,

Proceedings of the British Machine Vision Conference (BMVC), pages 71.1–

71.12. BMVA Press.

Khan, M. E. E., Immer, A., Abedi, E., and Korzepa, M. (2019). Approximate

inference turns deep networks into gaussian processes. Advances in neural

information processing systems, 32.

Kim, M. and De la Torre, F. (2010). Gaussian processes multiple instance

learning. In ICML.

Krishnamurthi, R. V., Ikeda, T., and Feigin, V. L. (2020). Global, regional

and Country-Specific burden of ischaemic stroke, intracerebral haemor-

rhage and subarachnoid haemorrhage: A systematic analysis of the global

burden of disease study 2017. Neuroepidemiology, 54(2):171–179.

Kukacka, J., Golkov, V., and Cremers, D. (2017). Regularization for deep learn-

ing: A taxonomy. CoRR, abs/1710.10686.

Li, S., Liu, Y., Sui, X., Chen, C., Tjio, G., Ting, D. S. W., and Goh, R. S. M.

(2019). Multi-instance multi-scale CNN for medical image classification. In

Shen, D., Liu, T., Peters, T. M., Staib, L. H., Essert, C., Zhou, S., Yap, P.,

and Khan, A. R., editors, Medical Image Computing and Computer Assisted

Intervention - MICCAI 2019 - 22nd International Conference, Shenzhen,

China, October 13-17, 2019, Proceedings, Part IV, volume 11767 of Lecture

Notes in Computer Science, pages 531–539. Springer.
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5. Appendix

This section is devoted to provide all the technical details about the CNN,

the attention layer, the GP and the fully connected layer at the end. It also

provides important implementation details.

5.1. Reshaping

Since we are dealing with bags of instances, our tensors contain an addi-

tional dimension that has to be dealt with. The input tensor has a shape of

(16, 512, 512, 57, 3) where the first dimension is the batch, the next two are the

height and width of the image, the fourth dimension is representing the number

of slices per bag, which is set to 57 for all bags, and the last one is the number

of channels. In order to apply the CNN to each instance separately, two trans-

formations are made. First, we transpose the tensor to move the bag dimension

to the beginning. And then, the batch and bag dimensions are joined. The code

for that is

1 tf.reshape(tf.transpose(inp , perm =(0,3,1,2,4)), shape=(-1,dim[0],

dim[1], 3))

This transformation is later undone in the attention layer.

5.2. CNN

Our CNN is composed of 6 convolutional layers, together with 6 batch nor-

malization layers and 6 max pooling layers. It also has some dropout layers in

between. All the max pool layers are the same, they use a 2 by 2 kernel with a

stride of 2 in every direction to reduce the width and height by 2. In tensorflow

they are written as

1 layers.MaxPool2D ((2, 2),strides =(2, 2),data_format="channels_last")
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The convolutional layers are all the same except for the first one. The first

one uses a 5 by 5 kernel, generates 16 channels, returns an image of the same

size (padding=’same’), and is initialized with the method glorot uniform. In

tensorflow:

1 Conv1 = layers.Conv2D (16, (5, 5), data_format="channels_last",

activation=’relu’, kernel_initializer=’glorot_uniform ’, padding

=’same’)

The rest of the convolutional layers use a 3 by 3 kernel, generate 32 output

channels with the default padding (’filter’), and the default initialization, which

is also glorot uniform. In tensorflow:

1 layers.Conv2D (32, (3,3), data_format="channels_last", activation=’

relu’)

After every convolutional layer, a batch normalization layer is immediately

applied, and then a max pooling layer. However, the dropout is only applied in

certain layers. Between layers 2 and 3, 5 and 6, and at the end. The dropout

layer is added between the max pooling of one layer and the convolutional layer

of the next. The dropout rate is set to 0.3 for all the layers.

5.3. Attention layer

The attention layer is simply implemented as two feed forward neural net-

works. One to account for the transformation of the latent vectors by the matrix

V, and another to account for the scalar product with the vector w. After that,

a softmax is applied. The code for that is

1 out = layers.Dense(D, activation=’tanh’)(inp)

2 out = layers.Dense(1, use_bias = False)(out)

3 out = tf.reshape(out , shape=(-1,dim [2]))

Where D is 50, the number of hidden neurons of that hidden layer between

the CNN and the attention layer. Not to be confused with the D of section 2.1

representing the depth of the bag. The output above are the weights, but they

need to be multiplied to each instance and averaged. Everything is done as a
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tensor product with appropriate reshaping. That way we can take advantage of

parallelization. The code is:

1 inp = keras.Input(shape=dim_)

2 H = layers.Flatten ()(inp)

3 A = attention(H)

4 H = tf.reshape(H, shape=(-1,dim[2], H.shape [1]))

5 A = tf.expand_dims(A, axis =1)

6 intermediate = tf.linalg.matmul(A,H)

7 intermediate = tf.squeeze(intermediate , axis =1)

8 out = layers.Dense (8)(intermediate)

5.4. GP

Since we wanted to train the GPs with gradient descent it made sense to

use two libraries that are an extension of tensorflow-probability: GPflow and

GPFlux. The first one is an implementation of sparse GPs using tensorflow as

the backend to train them. The second one is an implementation of Deep GPs

using GPFlow that makes it possible to create GPs as a normal tensorflow layer,

therefore making it easier to include them in any architecture. The only change

we needed to do was to modify the class GPLayerSeq to add the scaling factor.

The main changes in the code of the class are presented below:

1 log_prior = tf.add_n([p.log_prior_density () for p in self.kernel.

trainable_parameters ])

2 loss = self.prior_kl () # - log_prior

3 loss_per_datapoint = self.scale_factor * loss # / self.num_data

We commented out the log prior because we are already using the binary

cross-entropy as the likelihood term. And we also commented out self.num data

so that the KL loss was exactly what we described in the formulas in section

2.5.

5.5. Feed-forward neural network at the end

In the two models we have, at the end there is a neural network to pass from

an 8 dimensional vector to a 1 dimensional vector (a scalar) representing the
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probability of the bag being positive. The final layer is just a dense layer with

one neuron and sigmoid as the activation function.
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